
Symbolic AI

Andre Freitas

•Photo by Vasilyev Alexandr

Acknowledgements

• Based on the slides of:

– General Ideas in Inductive Logic Programming

(FOPI-RG).

– Lecture 6: Inductive Logic Programming

Cognitive Systems II - Machine Learning.

– CS 391L: Machine Learning: Rule Learning,

Mooney.

This Lecture

• Getting deeper into ILP.

Recap: ILP

• Goal is to induce a Horn-clause definition for some target
predicate P, given definitions of a set of background
predicates Q.

• Goal is to find a syntactically simple Horn-clause
definition, D, for P given background knowledge B
defining the background predicates Q.

– For every positive example pi of P

– For every negative example ni of P

• Background definitions are provided either:

– Extensionally: List of ground tuples satisfying the predicate.

– Intensionally: Prolog definitions of the predicate.

ipBD |

inBD |

Relational Learning and

Inductive Logic Programming (ILP)

• Fixed feature vectors are a very limited representation of
instances.

• Examples or target concept may require a relational
representation that includes multiple entities with relationships
between them (e.g. a graph with labeled edges and nodes).

• First-order predicate logic is a more powerful representation
for handling such relational descriptions.

• Horn clauses (i.e. if-then rules in predicate logic, Prolog
programs) are a useful restriction on full first-order logic that
allows decidable inference.

• Allows learning programs from sample I/O pairs.

Learning Rules

• Rules are fairly easy for people to understand and
therefore can help provide insight and comprehensible
results for human users.
– Frequently used in data mining applications where goal is

discovering understandable patterns in data.

• Methods for automatically inducing rules from data
have been shown to build more accurate expert
systems than human knowledge engineering for some
applications.

Rule Learning vs. Knowledge Engineering

• An influential experiment with an early rule-learning
method (AQ) by Michalski (1980) compared results to
knowledge engineering (acquiring rules by interviewing
experts).

• Knowledge engineered rules:
– Weights associated with each feature in a rule

– Method for summing evidence similar to certainty factors.

– No explicit disjunction

• Data for induction:
– Examples of 15 soybean plant diseases described using 35 nominal

and discrete ordered features, 630 total examples.

– 290 “best” (diverse) training examples selected for training.
Remainder used for testing

• What is wrong with this methodology?

Experimental Results

• Rule construction time:

– Human: 45 hours of expert consultation

– AQ11: 4.5 minutes training on IBM 360/75

• What doesn’t this account for?

• Test Accuracy:

1st choice correct Some choice correct

AQ11 97.6% 100.0%

Manual KE 71.8% 96.9%

Recap: Sequential Covering

• A set of rules is learned one at a time

• each time finding a single rule

• that covers a large number of positive instances

• without covering any negatives,

• removing the positives that it covers,

• and learning additional rules to cover the rest.
 Let P be the set of positive examples
 Until P is empty do:
 Learn a rule R that covers a large number of elements of P but
 no negatives.
 Add R to the list of rules.
 Remove positives covered by R from P

• This is an instance of the greedy algorithm for minimum set covering

and does not guarantee a minimum number of learned rules.
• Minimum set covering is an NP-hard problem and the greedy algorithm

is a standard approximation algorithm.

Strategies for Learning a Single Rule

• Top Down (General to Specific):
– Start with the most-general (empty) rule.

– Repeatedly add antecedent constraints on features that
eliminate negative examples while maintaining as many
positives as possible.

– Stop when only positives are covered.

• Bottom Up (Specific to General)
– Start with a most-specific rule (e.g. complete instance

description of a random instance).

– Repeatedly remove antecedent constraints in order to
cover more positives.

– Stop when further generalization results in covering
negatives.

Learning a Single Rule in FOIL

• Basic algorithm for instances with discrete-valued features:

Let A={} (set of rule antecedents)
Let N be the set of negative examples
Let P the current set of uncovered positive examples
Until N is empty do
 For every feature-value pair (literal) (Fi=Vij) calculate
 Gain(Fi=Vij, P, N)
 Pick literal, L, with highest gain.
 Add L to A.
 Remove from N any examples that do not satisfy L.
 Remove from P any examples that do not satisfy L.
Return the rule: A1 A2 … An → Positive

Rule Pruning in FOIL

• Prepruning method based on minimum description length
(MDL) principle.

• Postpruning to eliminate unnecessary complexity due to
limitations of greedy algorithm.

 For each rule, R
 For each antecedent, A, of rule
 If deleting A from R does not cause
 negatives to become covered
 then delete A

 For each rule, R
 If deleting R does not uncover any positives (since they
 are redundantly covered by other rules)
 then delete R

Minimum Description Length

• Devise an encoding that maps a theory (set of

clauses) into a bit string.

• Also need an encoding for examples.

• Number of bits required to encode theory should

not exceed number of bits to encode +ve

examples.

Rule Learning Issues

• Which is better top-down or bottom-up search?

– Bottom-up is more subject to noise, e.g. the random

seeds that are chosen may be noisy.

– Top-down is wasteful when there are many features

which do not even occur in the positive examples (e.g.

text categorization).

18

Rule Learning Issues

• Which is better rules or trees?

– Trees share structure between disjuncts.

– Rules allow completely independent features in each

disjunct.

– Mapping some rules sets to decision trees results in an

exponential increase in size.

•A B → P

•C D → P

•A

•t •f

•B

•t •f

•P
•C

•t •f
•D

•t •f

•P •N

•N

•C

•t •f
•D

•t •f

•P •N

•N •What if add rule:

•E F → P

• ??

Sequential vs Simultaneous

• Sequential covering:

– learn just one rule at a time, remove the covered examples and

– repeat the process on the remaining examples

– many search steps, making independent decisions to select earch

precondition for each rule

• Simultaneous covering:

– ID3 learns the entire set of disjunct rules simultaneously as part of

a single search for a decision tree

– Fewer search steps, because each choice influences the

preconditions of all rules

– Choice depends of how much data is available
• Plentiful: sequential covering (more steps supported)

• Scarce: simultaneous covering (decision sharing effective)

Induction as Inverted Deduction

• Observation: induction is just the inverse of deduction.

• In general, machine learning involves building theories

that explain the observed data.

• Given some data D and some background knowledge B,

learning can be described as generating a hypothesis h that,

together with B, explains D.

• The above equation casts the learning problem in the

framework of deductive inference and formal logic.

Induction as Inverted Deduction

• Features of inverted deduction:

– Subsumes the common definition of learning as finding some

general concept.

– Background knowledge allows a more rich definition of when

a hypothesis h is said to “fit” the data.

• Practical difficulties:

– Noisy data makes the logical framework to completely lose the

ability to distinguish between truth and falsehood.

– Search is intractable.

– Background knowledge often increases the complexity of H.

Inverting Resolution

• Resolution is a general method for automated deduction

• Complete and sound method for deductive inference

• Inverse Resolution Operator (propositional form):

– 1. Given initial clause C1 and C, find a literal L that occurs in C1

but not in clause C.

Inverting Resolution

• Resolution is a general method for automated deduction

• Complete and sound method for deductive inference

• Inverse Resolution Operator (propositional form):

– 1. Given initial clause C1 and C, find a literal L that occurs in C1

but not in clause C.

– 2. Form the second clause C2 by including the following literals

Generalization, θ-Subsumption, Entailment

ILP Examples

• Learn definitions of family relationships given

data for primitive types and relations.

 uncle(A,B) :- brother(A,C), parent(C,B).

 uncle(A,B) :- husband(A,C), sister(C,D), parent(D,B).

• Learn recursive list programs from I/O pairs.

member(X,[X | Y]).

member(X, [Y | Z]) :- member(X,Z).

append([],L,L).

append([X|L1],L2,[X|L12]):-append(L1,L2,L12).

Ensuring Termination in FOIL

• First empirically determines all binary-predicates in the
background that form a well-founded partial ordering by
computing their transitive closures.

• Only allows recursive calls in which one of the arguments
is reduced according to a known well-founded partial
ordering.
– path(X,Y) :- edge(X,Z), path(Z,Y).

 X is reduced to Z by edge so this recursive call is OK

• Due to halting problem, cannot determine if an arbitrary
recursive definition is guaranteed to halt.

Inducing Recursive List Programs

• FOIL can learn simple Prolog programs from I/O pairs.

• In Prolog, lists are represented using a logical function

:[Head | Tail].

• Since FOIL cannot handle functions, this is re-

represented as a predicate:

 components(List, Head, Tail)

• In general, an m-ary function can be replaced by a

(m+1)-ary predicate.

Logic Program Induction in FOIL

• FOIL has also learned
– append given components and null

– reverse given append, components, and null

– quicksort given partition, append, components, and
null

• Learning recursive programs in FOIL requires a complete set of
positive examples for some constrained universe of constants, so
that a recursive call can always be evaluated extensionally.

• Negative examples usually computed using a closed-world
assumption.
– Grows combinatorically large for higher arity target predicates.

– Can randomly sample negatives to make tractable.

FOIL Limitations

• Search space of literals (branching factor) can become
intractable.

– Use aspects of bottom-up search to limit search.

• Requires large extensional background definitions.

– Use intensional background via Prolog inference.

• Requires complete examples to learn recursive
definitions.

– Use intensional interpretation of learned recursive clauses.

FOIL Limitations (cont.)

• Requires a large set of closed-world negatives.

– Exploit “output completeness” to provide “implicit”
negatives.

• Inability to handle logical functions.

– Use bottom-up methods that handle functions.

• Background predicates must be sufficient to construct
definition, e.g. cannot learn reverse unless given
append.

– Predicate invention

• Learn reverse by inventing append

• Learn sort by inventing insert

ILP Settings

Examples: bird(penguin)

bird(eagle)

bird(crow)

bird(ostrich)

Positive: bird(carp)

bird(bat)

bird(horse)

Negative:

fish(X) :- has_scales(X), swims(X).

mammal(X):- warm_blooded(X), live_young(X).

Background knowledge:

swims(carp).
swims(penguin). flies(crow).

flies(bat).

flies(eagle). lays_eggs(penguin).

lays_eggs(crow).

lays_eggs(eagle).

lays_eggs(ostrich).

lays_eggs(carp).

runs(horse).

runs(ostrich).

bird(X):- lays_eggs(X), flies(X).
Theory (one or more clauses): bird(penguin).

bird(X):- lays_eggs(X), runs(X).

Bottom-Up Approach

bird(crow) bird(eagle)

bird(X):-

 relative least general generalisation (rlgg)

has(X, beak), has(X, talons), makes_nest(X),

eats(X,rodents).

lays_eggs(X), flies(X), has(X, feathers),

bird(ostrich) bird(X):-

has(X, talons), makes_nest(X),

eats(X,Y), validate_food(X,Y).

has(X, feathers), has(X, beak),

lays_eggs(X),

Used in GOLEM [Muggleton, 90]

Top-down Approach

bird(X):-.

bird(X):- lays_eggs(X).

bird(X):- flies(X).

bird(X):- lays_eggs(X), flies(X).

…

Some ILP engines use standard top-down search algorithms:

depth-first, breadth-first, A*, etc.

We can improve efficiency by:

• setting a depth-bound (max clauselength).

• paying attention to clause evaluation scores - coverage, MDL.

— re-ordering candidate clauses based on score

— pruning candidate clauses below a score threshold

• etc.

Practical Problem Areas

Most commonly encountered:

• Exploring large search spaces

• Positive-only data sets

• Noisy data

Search Space

The hypothesis space is bounded by:

– Maximum clause length

– Size of background knowledge (BK)

Techniques to reduce background knowledge include:

• Excluding redundant predicates

– Feature subset selection

– Inverse entailment

• Replacing existing BK with compound predicates

(feature construction).

1. Randomly pick a positive example, p.

2. Define the space of possible clauses that could

entail that example.
— Generate the bottom clause,

— contains all the literals defined in BK that could

cover p.

3. Search this space.

Progol and Aleph’s Approach

Uses inverse entailment.

Noisy Data

• Techniques to avoid over-fitting.

– Pre-pruning: limit length of clauses learned

– Post-pruning: generalise/merge clauses that
have a small cover set.

– Leniency: don’t insist on a perfect theory

• Embed the uncertainty into the learning

mechanism

– Stochastic Logic Programs

– Fuzzy ILP

– Diff ILP

Numerical Reasoning

Many ILP engines don’t handle numerical reasoning

without help.

e.g. bird(X):- number_of_legs(X,Y), lessthan(Y, 3).

[Karolic & Bratko, 97] • First-Order Regression

• (if possible) add predicates to the background knowledge

[Anthony & Frisch, 97] • Farm it out to another process

[Srinivasan & Camacho, 99] • Lazy evaluation

Inventing Predicates

Some ILP engines can invent new predicates and add
them to the existing BK.

FOIL only uses extensional BK and so can’t use this

method.

e.g. Progol uses constraints to call a predicate

invention routine.

:- constraint(invent/2)?

invent(P,X):- {complicated code that includes asserts}.

ILP Systems

• Top-Down:

– FOIL (Quinlan, 1990)

• Bottom-Up:

– CIGOL (Muggleton & Buntine, 1988)

– GOLEM (Muggleton, 1990)

• Hybrid:

– CHILLIN (Mooney & Zelle, 1994)

– PROGOL (Muggleton, 1995)

– ALEPH (Srinivasan, 2000)

Aleph

• file.b: contains the background knowledge

(intentional and extensional), the search, language

restrictions and types restrictions and the system

parameters. (as Prolog clauses).

• file.f: contains the positive examples (only ground

facts) to be learned with Aleph;

• file.n: contains the negative examples (only facts

without variables) - optional.

Mode Declarations

• Describe the relations (predicates) between the objects and

the type of data.

• Declarations inform Aleph if the relation can be used in the

head (modeh declarations) or in the body (modeb

declarations) of the generated rules.

mode(Recall number, PredicateMode)

• For instance, if we want to declare the predicate

parent_of(P,D) the recall should be 2, because the daughter

D, has a maximum of two parents P.

• Recall number of grandparents(GP,GD) = ?

• The Modes indicates the predicate format, and can be

described as:

predicate(ModeType1, ModeType2, ... , ModeTypen)

– ’+’, specifying that when a predicate p appears in a clause, the

corresponding argument is an input variable;

– ’-’, specifying that the corresponding argument is an output

variable;

– ’#’, specifying that the corresponding argument is a constant.

Mode: Example

• Example: for the learning relation uncle of(U,N) with the background

knowledge parent of(P,D) and sister of(S1,S2), the mode declarations

could be:

Types

person(john)

person(leihla)

person(richard)

...

Determinations

• Determination statements declare the predicate

that can be used to construct a hypothesis

determination(Target Pred/Arity t, Body Pred/Arity b).

determination(aunt_of/2, parent_of/2).

Determinations are only allowed for 1 target predicate on any given run of

Aleph: if multiple target determinations occur, the first one is chosen

Positive and Negative Examples

• Positive examples: file with an extension .f

• Negative examples: file with an extension .n

...

Output

