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This Lecture 

• Getting deeper into ILP. 

 

 

 

 



Recap: ILP 

• Goal is to induce a Horn-clause definition for some target 
predicate P, given definitions of a set of background 
predicates Q. 

 

• Goal is to find a syntactically simple Horn-clause 
definition, D, for P given background knowledge B 
defining the background predicates Q.  

– For every positive example pi of P 

 

– For every negative example ni of P 

 

 

• Background definitions are provided either: 

– Extensionally: List of ground tuples satisfying the predicate. 

– Intensionally: Prolog definitions of the predicate. 
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Relational Learning and 

Inductive Logic Programming (ILP) 

• Fixed feature vectors are a very limited representation of 
instances. 

 

• Examples or target concept may require a relational 
representation that includes multiple entities with relationships 
between them (e.g. a graph with labeled edges and nodes). 

 

• First-order predicate logic is a more powerful representation 
for handling such relational descriptions. 

 

• Horn clauses (i.e. if-then rules in predicate logic, Prolog 
programs) are a useful restriction on full first-order logic that 
allows decidable inference. 

 

• Allows learning programs from sample I/O pairs. 



Learning Rules 

• Rules are fairly easy for people to understand and 
therefore can help provide insight and comprehensible 
results for human users.  
– Frequently used in data mining applications where goal is 

discovering understandable patterns in data. 

 

 

• Methods for automatically inducing rules from data 
have been shown to build more accurate expert 
systems than human knowledge engineering for some 
applications. 
 

 

 



Rule Learning vs. Knowledge Engineering 

• An influential experiment with an early rule-learning 
method (AQ) by Michalski (1980) compared results to 
knowledge engineering (acquiring rules by interviewing 
experts). 

 

• Knowledge engineered rules: 
– Weights associated with each feature in a rule 

– Method for summing evidence similar to certainty factors. 

– No explicit disjunction 

 

• Data for induction: 
– Examples of 15 soybean plant diseases described using 35 nominal 

and discrete ordered features, 630 total examples. 

– 290 “best” (diverse) training examples selected for training.  
Remainder used for testing 

• What is wrong with this methodology?  



Experimental Results 

• Rule construction time: 

– Human: 45 hours of expert consultation 

– AQ11: 4.5 minutes training on IBM 360/75 

• What doesn’t this account for? 

 

• Test Accuracy: 

1st choice correct Some choice correct 

AQ11 97.6% 100.0% 

Manual KE 71.8% 96.9% 



Recap: Sequential Covering 

• A set of rules is learned one at a time 

• each time finding a single rule  

• that covers a large number of positive instances  

• without covering any negatives,  

• removing the positives that it covers,  

• and learning additional rules to cover the rest. 
      Let P be the set of positive examples 
       Until P is empty do: 
                Learn a rule R that covers a large number of elements of P but 
                      no negatives. 
                Add R to the list of rules. 
                Remove positives covered by R from P 

 
• This is an instance of the greedy algorithm for minimum set covering 

and does not guarantee a minimum number of learned rules. 
• Minimum set covering is an NP-hard problem and the greedy algorithm 

is a standard approximation algorithm. 

 



Strategies for Learning a Single Rule 

• Top Down (General to Specific): 
– Start with the most-general (empty) rule. 

– Repeatedly add antecedent constraints on features that 
eliminate negative examples while maintaining as many 
positives as possible. 

– Stop when only positives are covered. 

 

• Bottom Up (Specific to General)  
– Start with a most-specific rule (e.g. complete instance 

description of a random instance). 

– Repeatedly remove antecedent constraints in order to 
cover more positives. 

– Stop when further generalization results in covering 
negatives. 



Learning a Single Rule in FOIL 

• Basic algorithm for instances with discrete-valued features: 

 
Let A={} (set of rule antecedents) 
Let N be the set of negative examples 
Let P the current set of uncovered positive examples 
Until N is empty do 
         For every feature-value pair (literal) (Fi=Vij) calculate 
              Gain(Fi=Vij, P, N) 
         Pick literal, L, with highest gain. 
         Add L to A. 
         Remove from N any examples that do not satisfy L. 
         Remove from P any examples that do not satisfy L. 
Return the rule: A1 A2 … An → Positive 
 

 



Rule Pruning in FOIL 

• Prepruning method based on minimum description length 
(MDL) principle. 

 

• Postpruning to eliminate unnecessary complexity due to 
limitations of greedy algorithm. 

      For each rule, R 
          For each antecedent, A, of rule 
               If deleting A from R does not cause       
                 negatives to become covered 
               then delete A 
        
     For each rule, R 
        If deleting R does not uncover any positives (since they    
              are redundantly covered by other rules) 
            then delete R 

 



Minimum Description Length 

• Devise an encoding that maps a theory (set of 

clauses) into a bit string. 

 

• Also need an encoding for examples. 

 

• Number of bits required to encode theory should 

not exceed number of bits to encode +ve 

examples. 



Rule Learning Issues 

• Which is better top-down or bottom-up search? 

 

– Bottom-up is more subject to noise, e.g. the random 

seeds that are chosen may be noisy. 

 

– Top-down is wasteful when there are many features 

which do not even occur in the positive examples (e.g. 

text categorization). 
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Rule Learning Issues 

• Which is better rules or trees? 

– Trees share structure between disjuncts. 

– Rules allow completely independent features in each 

disjunct. 

– Mapping some rules sets to decision trees results in an 

exponential increase in size. 

•A  B → P  

•C  D → P 

•A 

•t •f 

•B 

•t •f 

•P 
•C 

•t •f 
•D 

•t •f 

•P •N 

•N 

•C 

•t •f 
•D 

•t •f 

•P •N 

•N •What if add rule: 

•E  F → P 

•       ?? 



Sequential vs Simultaneous 

• Sequential covering: 

– learn just one rule at a time, remove the covered examples and 

– repeat the process on the remaining examples 

– many search steps, making independent decisions to select earch 

precondition for each rule 

 

• Simultaneous covering: 

– ID3 learns the entire set of disjunct rules simultaneously as part of 

a single search for a decision tree 

– Fewer search steps, because each choice influences the 

preconditions of all rules 

– Choice depends of how much data is available 
• Plentiful: sequential covering (more steps supported) 

• Scarce: simultaneous covering (decision sharing effective) 



Induction as Inverted Deduction 

• Observation: induction is just the inverse of deduction. 

 

• In general, machine learning involves building theories 

that explain the observed data. 

 

• Given some data D and some background knowledge B, 

learning can be described as generating a hypothesis h that, 

together with B, explains D. 

 

 

 

• The above equation casts the learning problem in the 

framework of deductive inference and formal logic. 



Induction as Inverted Deduction 

• Features of inverted deduction: 

– Subsumes the common definition of learning as finding some 

general concept. 

– Background knowledge allows a more rich definition of when 

a hypothesis h is said to “fit” the data. 

 

• Practical difficulties: 

– Noisy data makes the logical framework to completely lose the 

ability to distinguish between truth and falsehood. 

– Search is intractable. 

– Background knowledge often increases the complexity of H. 



Inverting Resolution 

• Resolution is a general method for automated deduction 

 

• Complete and sound method for deductive inference 

 

• Inverse Resolution Operator (propositional form): 

– 1. Given initial clause C1 and C, find a literal L that occurs in C1 

but not in clause C. 

 

 



 



Inverting Resolution 

• Resolution is a general method for automated deduction 

 

• Complete and sound method for deductive inference 

 

• Inverse Resolution Operator (propositional form): 

– 1. Given initial clause C1 and C, find a literal L that occurs in C1 

but not in clause C. 

– 2. Form the second clause C2 by including the following literals 

 

 



 



 



Generalization, θ-Subsumption, Entailment 

 



ILP Examples 

• Learn definitions of family relationships given 

data for primitive types and relations. 

      uncle(A,B) :- brother(A,C), parent(C,B). 

       uncle(A,B) :- husband(A,C), sister(C,D), parent(D,B). 

 

• Learn recursive list programs from I/O pairs. 

member(X,[X | Y]). 

member(X, [Y | Z]) :- member(X,Z). 

 

append([],L,L). 

append([X|L1],L2,[X|L12]):-append(L1,L2,L12). 



Ensuring Termination in FOIL 

• First empirically determines all binary-predicates in the 
background that form a well-founded partial ordering by 
computing their transitive closures. 

 

• Only allows recursive calls in which one of the arguments 
is reduced according to a known well-founded partial 
ordering. 
– path(X,Y) :- edge(X,Z), path(Z,Y). 

  X is reduced to Z by edge so this recursive call is OK 

 

• Due to halting problem, cannot determine if an arbitrary 
recursive definition is guaranteed to halt. 

  

 

 



Inducing Recursive List Programs 

• FOIL can learn simple Prolog programs from I/O pairs. 

• In Prolog, lists are represented using a logical function 

:[Head | Tail]. 

 

• Since FOIL cannot handle functions, this is re-

represented as a predicate: 

     components(List, Head, Tail) 

 

• In general, an m-ary function can be replaced by a 

(m+1)-ary predicate. 



Logic Program Induction in FOIL 

• FOIL has also learned 
– append given components and null 

– reverse given append, components, and null 

– quicksort given partition, append, components, and 
null 

 

• Learning recursive programs in FOIL requires a complete set of 
positive examples for some constrained universe of constants, so 
that a recursive call can always be evaluated extensionally. 

 

• Negative examples usually computed using a closed-world 
assumption.   
– Grows combinatorically large for higher arity target predicates. 

– Can randomly sample negatives to make tractable. 



FOIL Limitations 

• Search space of literals (branching factor) can become 
intractable. 

– Use aspects of bottom-up search to limit search. 

 

• Requires large extensional background definitions. 

– Use intensional background via Prolog inference. 

 

• Requires complete examples to learn recursive 
definitions. 

– Use intensional interpretation of learned recursive clauses. 



FOIL Limitations (cont.) 

• Requires a large set of closed-world negatives. 

– Exploit “output completeness” to provide “implicit” 
negatives. 

 

• Inability to handle logical functions. 

– Use bottom-up methods that handle functions. 

 

• Background predicates must be sufficient to construct 
definition, e.g. cannot learn reverse unless given 
append. 

– Predicate invention 

• Learn reverse by inventing append 

• Learn sort by inventing insert 



ILP Settings 

Examples: bird(penguin) 

bird(eagle) 

bird(crow) 

bird(ostrich) 

Positive: bird(carp) 

bird(bat) 

bird(horse) 

Negative: 

fish(X) :- has_scales(X), swims(X). 

mammal(X):- warm_blooded(X), live_young(X). 

Background knowledge: 

swims(carp). 
swims(penguin). flies(crow). 

flies(bat). 

flies(eagle). lays_eggs(penguin). 

lays_eggs(crow). 

lays_eggs(eagle). 

lays_eggs(ostrich). 

lays_eggs(carp). 

runs(horse). 

runs(ostrich). 

bird(X):- lays_eggs(X), flies(X). 
Theory (one or more clauses): bird(penguin). 

bird(X):- lays_eggs(X), runs(X). 



Bottom-Up Approach 

bird(crow) bird(eagle) 

bird(X):- 

 relative least general generalisation (rlgg) 

has(X, beak), has(X, talons), makes_nest(X), 

eats(X,rodents). 

lays_eggs(X), flies(X), has(X, feathers), 

bird(ostrich) bird(X):- 

has(X, talons), makes_nest(X), 

eats(X,Y), validate_food(X,Y). 

has(X, feathers), has(X, beak),  

lays_eggs(X), 

Used in GOLEM [Muggleton, 90] 



Top-down Approach 

bird(X):-. 

bird(X):- lays_eggs(X). 

bird(X):- flies(X). 

bird(X):- lays_eggs(X), flies(X). 

… 

Some ILP engines use standard top-down search algorithms: 

depth-first, breadth-first, A*, etc. 

We can improve efficiency by: 

• setting a depth-bound (max clauselength). 

• paying attention to clause evaluation scores - coverage, MDL. 

— re-ordering candidate clauses based on score  

— pruning candidate clauses below a score threshold 

• etc. 



Practical Problem Areas 

Most commonly encountered: 

• Exploring large search spaces 

• Positive-only data sets 

• Noisy data 



Search Space 

The hypothesis space is bounded by: 

– Maximum clause length 

– Size of background knowledge (BK) 

 

Techniques to reduce background knowledge include: 

 

• Excluding redundant predicates 

– Feature subset selection 

– Inverse entailment 

 

• Replacing existing BK with compound predicates 

(feature construction). 



1. Randomly pick a positive example, p. 

2. Define the space of possible clauses that could 

entail that example. 
— Generate the bottom clause,  

—     contains all the literals defined in BK that could 

cover p. 

3. Search this space. 

Progol and Aleph’s Approach 

Uses inverse entailment. 



Noisy Data 

• Techniques to avoid over-fitting.  

– Pre-pruning: limit length of clauses learned 

– Post-pruning: generalise/merge clauses that 
have a small cover set. 

– Leniency: don’t insist on a perfect theory 

• Embed the uncertainty into the learning 

mechanism 

– Stochastic Logic Programs 

– Fuzzy ILP 

– Diff ILP 



Numerical Reasoning 

Many ILP engines don’t handle numerical reasoning 

without help. 

e.g.  bird(X):- number_of_legs(X,Y), lessthan(Y, 3). 

[Karolic & Bratko, 97] • First-Order Regression 

• (if possible) add predicates to the background knowledge  

[Anthony & Frisch, 97] • Farm it out to another process 

[Srinivasan & Camacho, 99] • Lazy evaluation 



Inventing Predicates 

Some ILP engines can invent new predicates and add 
them to the existing BK. 

 

FOIL only uses extensional BK and so can’t use this 

method. 

e.g. Progol uses constraints to call a predicate 

invention routine. 

:- constraint(invent/2)? 

invent(P,X):-    {complicated code that includes asserts}. 



ILP Systems 

• Top-Down:  

– FOIL (Quinlan, 1990) 

 

• Bottom-Up:  

– CIGOL (Muggleton & Buntine,  1988) 

– GOLEM (Muggleton, 1990) 

 

• Hybrid: 

– CHILLIN (Mooney & Zelle, 1994) 

– PROGOL (Muggleton, 1995) 

– ALEPH (Srinivasan, 2000) 



Aleph 

• file.b: contains the background knowledge 

(intentional and extensional), the search, language 

restrictions and types restrictions and the system 

parameters. (as Prolog clauses).  

 

• file.f: contains the positive examples (only ground 

facts) to be learned with Aleph; 

 

• file.n: contains the negative examples (only facts 

without variables) - optional.  



Mode Declarations 

• Describe the relations (predicates) between the objects and 

the type of data.  

 

• Declarations inform Aleph if the relation can be used in the 

head (modeh declarations) or in the body (modeb 

declarations) of the generated rules. 

 

mode(Recall number, PredicateMode) 

 

• For instance, if we want to declare the predicate 

parent_of(P,D) the recall should be 2, because the daughter 

D, has a maximum of two parents P. 



• Recall number of grandparents(GP,GD) = ? 



• The Modes indicates the predicate format, and can be 

described as: 

 

predicate(ModeType1, ModeType2, ... , ModeTypen) 

 

– ’+’, specifying that when a predicate p appears in a clause, the 

corresponding argument is an input variable; 

– ’-’, specifying that the corresponding argument is an output 

variable; 

– ’#’, specifying that the corresponding argument is a constant. 



Mode: Example 

• Example: for the learning relation uncle of(U,N) with the background 

knowledge parent of(P,D) and sister of(S1,S2), the mode declarations 

could be: 



Types 

person(john) 

person(leihla) 

person(richard) 

... 



Determinations 

• Determination statements declare the predicate 

that can be used to construct a hypothesis 

 

determination(Target Pred/Arity t, Body Pred/Arity b). 

 

determination(aunt_of/2, parent_of/2). 

 

 

Determinations are only allowed for 1 target predicate on any given run of 

Aleph: if multiple target determinations occur, the first one is chosen 



Positive and Negative Examples 

• Positive examples: file with an extension .f  

• Negative examples: file with an extension .n 

 
... 



 



 



Output 

 


