Acknowledgements

• Based on the slides of:
 – General Ideas in Inductive Logic Programming (FOPI-RG).
This Lecture

• Getting deeper into ILP.
Recap: ILP

• Goal is to induce a Horn-clause definition for some target predicate P, given definitions of a set of background predicates Q.

• Goal is to find a syntactically simple Horn-clause definition, D, for P given background knowledge B defining the background predicates Q.
 – For every positive example p_i of P
 $D \cup B \models p_i$
 – For every negative example n_i of P
 $D \cup B \not\models n_i$

• Background definitions are provided either:
 – **Extensionally**: List of ground tuples satisfying the predicate.
 – **Intensionally**: Prolog definitions of the predicate.
Relational Learning and Inductive Logic Programming (ILP)

- **Fixed feature vectors** are a very limited representation of instances.

- Examples or target concept may require a relational representation that includes multiple entities with relationships between them (e.g. a graph with labeled edges and nodes).

- **First-order predicate logic** is a more powerful representation for handling such relational descriptions.

- **Horn clauses** (i.e. if-then rules in predicate logic, Prolog programs) are a useful restriction on full first-order logic that allows decidable inference.

- Allows learning programs from sample I/O pairs.
Learning Rules

• Rules are fairly easy for people to understand and therefore can help provide insight and comprehensible results for human users.
 – Frequently used in data mining applications where goal is discovering understandable patterns in data.

• Methods for automatically inducing rules from data have been shown to build more accurate expert systems than human knowledge engineering for some applications.
Rule Learning vs. Knowledge Engineering

- An influential experiment with an early rule-learning method (AQ) by Michalski (1980) compared results to knowledge engineering (acquiring rules by interviewing experts).

- Knowledge engineered rules:
 - Weights associated with each feature in a rule
 - Method for summing evidence similar to *certainty factors*.
 - No explicit disjunction

- Data for induction:
 - Examples of 15 soybean plant diseases described using 35 nominal and discrete ordered features, 630 total examples.
 - 290 “best” (diverse) training examples selected for training. Remainder used for testing
 - What is wrong with this methodology?
Experimental Results

- Rule construction time:
 - Human: 45 hours of expert consultation
 - AQ11: 4.5 minutes training on IBM 360/75
 - What doesn’t this account for?

- Test Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>1st choice correct</th>
<th>Some choice correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ11</td>
<td>97.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Manual KE</td>
<td>71.8%</td>
<td>96.9%</td>
</tr>
</tbody>
</table>
Recap: Sequential Covering

- A set of rules is learned one at a time
- each time finding a single rule
- that covers a large number of positive instances
- without covering any negatives,
- removing the positives that it covers,
- and learning additional rules to cover the rest.

Let P be the set of positive examples

Until P is empty do:
- Learn a rule R that covers a large number of elements of P but no negatives.
- Add R to the list of rules.
- Remove positives covered by R from P

- This is an instance of the greedy algorithm for minimum set covering and does not guarantee a minimum number of learned rules.
- Minimum set covering is an NP-hard problem and the greedy algorithm is a standard approximation algorithm.
Strategies for Learning a Single Rule

• Top Down (General to Specific):
 – Start with the most-general (empty) rule.
 – Repeatedly add antecedent constraints on features that eliminate negative examples while maintaining as many positives as possible.
 – Stop when only positives are covered.

• Bottom Up (Specific to General)
 – Start with a most-specific rule (e.g. complete instance description of a random instance).
 – Repeatedly remove antecedent constraints in order to cover more positives.
 – Stop when further generalization results in covering negatives.
Learning a Single Rule in FOIL

• Basic algorithm for instances with discrete-valued features:

Let $A=\{\}$ (set of rule antecedents)
Let N be the set of negative examples
Let P the current set of uncovered positive examples

Until N is empty do
 For every feature-value pair (literal) $(F_i=V_{ij})$ calculate $\text{Gain}(F_i=V_{ij}, P, N)$
 Pick literal, L, with highest gain.
 Add L to A.
 Remove from N any examples that do not satisfy L.
 Remove from P any examples that do not satisfy L.

Return the rule: $A_1 \land A_2 \land \ldots \land A_n \rightarrow \text{Positive}$
Rule Pruning in FOIL

• Prepruning method based on **minimum description length (MDL)** principle.

• Postpruning to eliminate unnecessary complexity due to limitations of greedy algorithm.

 For each rule, R

 For each antecedent, A, of rule

 If deleting A from R does not cause negatives to become covered
 then delete A

 For each rule, R

 If deleting R does not uncover any positives (since they are redundantly covered by other rules)
 then delete R
Minimum Description Length

• Devise an encoding that maps a theory (set of clauses) into a bit string.

• Also need an encoding for examples.

• Number of bits required to encode theory **should not exceed** number of bits to encode +ve examples.
Rule Learning Issues

- Which is better top-down or bottom-up search?

 - **Bottom-up** is more subject to noise, e.g. the random seeds that are chosen may be noisy.

 - **Top-down** is wasteful when there are many features which do not even occur in the positive examples (e.g. text categorization).
Rule Learning Issues

• Which is better rules or trees?
 – Trees share structure between disjuncts.
 – Rules allow completely independent features in each disjunct.
 – Mapping some rules sets to decision trees results in an exponential increase in size.

• \(A \land B \rightarrow P \)
• \(C \land D \rightarrow P \)

• What if add rule:
 • \(E \land F \rightarrow P \)
 • ??
Sequential vs Simultaneous

• **Sequential covering:**
 – learn just one rule at a time, remove the covered examples and
 – repeat the process on the remaining examples
 – many search steps, making independent decisions to select each
 precondition for each rule

• **Simultaneous covering:**
 – ID3 learns the entire set of disjunct rules simultaneously as part of
 a single search for a decision tree
 – Fewer search steps, because each choice influences the
 preconditions of all rules
 – Choice depends on how much data is available
 • Plentiful: sequential covering (more steps supported)
 • Scarce: simultaneous covering (decision sharing effective)
Induction as Inverted Deduction

- **Observation**: induction is just the inverse of deduction.

- In general, machine learning involves building theories that explain the observed data.

- Given some *data D* and some *background knowledge B*, learning can be described as generating a *hypothesis h* that, together with B, explains D.

\[
(\forall < x_i, f(x_i) \geq D)(B \land h \land x_i) \vdash f(x_i)
\]

- The above equation casts the learning problem in the framework of deductive inference and formal logic.
Induction as Inverted Deduction

• **Features of inverted deduction:**
 – Subsumes the common definition of learning as finding some general concept.
 – Background knowledge allows a more rich definition of when a hypothesis h is said to “fit” the data.

• **Practical difficulties:**
 – Noisy data makes the logical framework to completely lose the ability to distinguish between truth and falsehood.
 – Search is intractable.
 – Background knowledge often increases the complexity of H.
Inverting Resolution

- Resolution is a general method for automated deduction
- Complete and sound method for deductive inference

Inverse Resolution Operator (propositional form):
- 1. Given initial clause C_1 and C, find a literal L that occurs in C_1 but not in clause C.
C₁: PassExam ∨ ~KnowMaterial

C₂: KnowMaterial ∨ ~Study

C: PassExam ∨ ~Study
Inverting Resolution

- Resolution is a general method for automated deduction
- Complete and sound method for deductive inference

- **Inverse Resolution Operator** (propositional form):
 - 1. Given initial clause C_1 and C, find a literal L that occurs in C_1 but not in clause C.
 - 2. Form the second clause C_2 by including the following literals

\[
C_2 = (C - (C_1 - \{L\})) \cup \{L\}
\]
\[C_2 = (C - (C_1 - \{L\})) \cup \{L\} \]

\[C_1: \text{PassExam} \lor \sim \text{KnowMaterial} \]

\[C_2: \text{KnowMaterial} \lor \sim \text{Study} \]

\[C: \text{PassExam} \lor \sim \text{Study} \]
\[D = \{ \text{GrandChild}(Bob, Shannon) \} \]

\[B = \{ \text{Father}(Shannon, Tom), \text{Father}(Tom, Bob) \} \]
Generalization, θ-Subsumption, Entailment

interesting to consider the relationship between the more_general_than relation and inverse entailment hypothesis can also be expressed as $c(x) \leftarrow h(x)$.

θ - subsumption: Consider two clauses C_j and C_k, both of the form $H \lor L_1 \lor \ldots \lor L_n$, where H is a positive literal and the L_i are arbitrary literals. Clause C_j is said to θ - subsume clause C_k iff $(\exists \theta)[C_j \theta \subseteq C_k]$.

Entailment: Consider two clauses C_j and C_k. Clause C_j is said to entail clause C_k (written $C_j \vdash C_k$) iff C_j follows deductively from C_k.
ILP Examples

• Learn definitions of family relationships given data for primitive types and relations.

 uncle(A, B) :- brother(A, C), parent(C, B).
 uncle(A, B) :- husband(A, C), sister(C, D), parent(D, B).

• Learn recursive list programs from I/O pairs.

 member(X, [X | Y]).
 member(X, [Y | Z]) :- member(X, Z).

 append([], L, L).
 append([X|L1], L2, [X|L12]) :- append(L1, L2, L12).
Ensuring Termination in FOIL

- First empirically determines all binary-predicates in the background that form a well-founded partial ordering by computing their transitive closures.

- Only allows recursive calls in which one of the arguments is reduced according to a known well-founded partial ordering.
 - \(\text{path}(X, Y) :\text{edge}(X, Z), \text{path}(Z, Y) \).
 - \(X \) is reduced to \(Z \) by \text{edge} so this recursive call is OK

- Due to halting problem, cannot determine if an arbitrary recursive definition is guaranteed to halt.
Inducing Recursive List Programs

- FOIL can learn simple Prolog programs from I/O pairs.
- In Prolog, lists are represented using a logical function : [Head | Tail].

- Since FOIL cannot handle functions, this is re-represented as a predicate:
 `components(List, Head, Tail)`

- In general, an m-ary function can be replaced by a $(m+1)$-ary predicate.
Logic Program Induction in FOIL

- FOIL has also learned
 - `append` given `components` and `null`
 - `reverse` given `append`, `components`, and `null`
 - `quicksort` given `partition`, `append`, `components`, and `null`

- Learning recursive programs in FOIL requires a complete set of positive examples for some constrained universe of constants, so that a recursive call can always be evaluated extensionally.

- Negative examples usually computed using a closed-world assumption.
 - Grows combinatorically large for higher arity target predicates.
 - Can randomly sample negatives to make tractable.
Foil Limitations

• Search space of literals (branching factor) can become intractable.
 – Use aspects of bottom-up search to limit search.

• Requires large extensional background definitions.
 – Use intensional background via Prolog inference.

• Requires complete examples to learn recursive definitions.
 – Use intensional interpretation of learned recursive clauses.
FOIL Limitations (cont.)

• Requires a large set of closed-world negatives.
 – Exploit “output completeness” to provide “implicit” negatives.

• Inability to handle logical functions.
 – Use bottom-up methods that handle functions.

• Background predicates must be sufficient to construct definition, e.g. cannot learn reverse unless given append.
 – Predicate invention
 • Learn reverse by inventing append
 • Learn sort by inventing insert
ILP Settings

Examples:
Positive: bird(penguin)
bird(eagle)
bird(crow)
bird(ostrich)

Negative: bird(carp)
bird(bat)
bird(horse)

Background knowledge:

lays_eggs(penguin). flies(eagle).
lays_eggs(crow).
lays_eggs(eagle).
lays_eggs(ostrich).
lays_eggs(carp).
fish(X) :- has_scales(X), swims(X).

mammal(X):- warm_blooded(X), live年輕(X).

Theory (one or more clauses):

bird(penguin).
bird(X) :- lays_eggs(X), flies(X).
bird(X) :- lays_eggs(X), runs(X).
Bottom-Up Approach

- relative least general generalisation (rlgg)

\[
\text{bird}(X) :\quad \text{lays_eggs}(X), \text{flies}(X), \text{has}(X, \text{feathers}),
\]
\[
\quad \text{has}(X, \text{beak}), \text{has}(X, \text{talons}), \text{makes_nest}(X),
\]
\[
\quad \text{eats}(X, \text{rodents}).
\]

bird(eagle) bird(crow)

bird(ostrich) bird(ostrich)

\[
\text{bird}(X) :\quad \text{lays_eggs}(X),
\]
\[
\quad \text{has}(X, \text{feathers}), \text{has}(X, \text{beak}),
\]
\[
\quad \text{has}(X, \text{talons}), \text{makes_nest}(X),
\]
\[
\quad \text{eats}(X,Y), \text{validate_food}(X,Y).
\]

Used in GOLEM [Muggleton, 90]
Top-down Approach

Some ILP engines use standard top-down search algorithms: depth-first, breadth-first, A*, etc.

bird(X):-.
bird(X):- lays_eggs(X).
bird(X):- flies(X).
bird(X):- lays_eggs(X), flies(X).
...

We can improve efficiency by:
• setting a depth-bound (max clauselength).
• paying attention to clause evaluation scores - coverage, MDL.
 — re-ordering candidate clauses based on score
 — pruning candidate clauses below a score threshold
• etc.
Practical Problem Areas

Most commonly encountered:

- Exploring large search spaces
- Positive-only data sets
- Noisy data
Search Space

The hypothesis space is bounded by:
- Maximum clause length
- Size of background knowledge (BK)

Techniques to reduce background knowledge include:

- Excluding redundant predicates
 - Feature subset selection
 - Inverse entailment

- Replacing existing BK with compound predicates (feature construction).
Prolog and Aleph’s Approach

Uses inverse entailment.

1. Randomly pick a positive example, p.
2. Define the space of possible clauses that could entail that example.
 — Generate the bottom clause, \bot
 — \bot contains all the literals defined in BK that could cover p.
3. Search this space.
Noisy Data

• Techniques to avoid over-fitting.
 – Pre-pruning: limit length of clauses learned
 – Post-pruning: generalise/merge clauses that have a small cover set.
 – Leniency: don’t insist on a perfect theory

• Embed the uncertainty into the learning mechanism
 – Stochastic Logic Programs
 – Fuzzy ILP
 – Diff ILP
Numerical Reasoning

e.g. \texttt{bird(X):- number_of_legs(X,Y), lessthan(Y, 3).}

Many ILP engines don’t handle numerical reasoning without help.

- Lazy evaluation \cite{Srinivasan & Camacho, 99}
- Farm it out to another process \cite{Anthony & Frisch, 97}
- (if possible) add predicates to the background knowledge
- First-Order Regression \cite{Karolic & Bratko, 97}
Inventing Predicates

Some ILP engines can invent new predicates and add them to the existing BK.

e.g. Progol uses constraints to call a predicate invention routine.

:- constraint(invent/2)?

invent(P,X):- {complicated code that includes asserts}.

FOIL only uses extensional BK and so can’t use this method.
ILP Systems

• Top-Down:
 – FOIL (Quinlan, 1990)

• Bottom-Up:
 – CIGOL (Muggleton & Buntine, 1988)
 – GOLEM (Muggleton, 1990)

• Hybrid:
 – CHILLIN (Mooney & Zelle, 1994)
 – PROGOL (Muggleton, 1995)
 – ALEPH (Srinivasan, 2000)
Aleph

- file.b: contains the background knowledge (intentional and extensional), the search, language restrictions and types restrictions and the system parameters. (as Prolog clauses).

- file.f: contains the positive examples (only ground facts) to be learned with Aleph;

- file.n: contains the negative examples (only facts without variables) - optional.
Mode Declarations

• Describe the relations (predicates) between the objects and the type of data.

• Declarations inform Aleph if the relation can be used in the head (modeh declarations) or in the body (modeb declarations) of the generated rules.

 mode(Recall number, PredicateMode)

• For instance, if we want to declare the predicate parent_of(P,D) the recall should be 2, because the daughter D, has a maximum of two parents P.
• Recall number of grandparents (GP, GD) = ?
The Modes indicates the predicate format, and can be described as:

\[
\text{predicate}(\text{ModeType}_1, \text{ModeType}_2, \ldots, \text{ModeType}_n)
\]

- ’+’, specifying that when a predicate \(p \) appears in a clause, the corresponding argument is an input variable;
- ’-’, specifying that the corresponding argument is an output variable;
- ’#’, specifying that the corresponding argument is a constant.
Mode: Example

- Example: for the learning relation uncle of(U,N) with the background knowledge parent of(P,D) and sister of(S1,S2), the mode declarations could be:

```prolog
:- modeh(1, uncle_of(+person, +person)).
:- modeb(*, parent_of(-person, +person)).
:- modeb(*, parent_of(+person, -person)).
:- modeb(*, sister_of(+person, -person)).
```
Types

person(john)
person(leihla)
person(richard)
...

Determination statements declare the predicate that can be used to construct a hypothesis

determination(Target Pred/Arity t, Body Pred/Arity b).

determination(aunt_of/2, parent_of/2).

Determinations are only allowed for 1 target predicate on any given run of Aleph: if multiple target determinations occur, the first one is chosen.
Positive and Negative Examples

• Positive examples: file with an extension .f
• Negative examples: file with an extension .n

...
% Mode declarations

:- modeh(1,aunt_of(+person,+person))?
:- modeb(*,parent_of(-person,+person))?
:- modeb(*,parent_of(+person,-person))?
:- modeb(*,sister_of(+person,-person))?

% Types

person(jane).
person(henry).
person(sally).
person(jim).
person(sam).
person(sarah).
person(judy).

% Background knowledge

father_of(sam,henry).
mother_of(sarah,jim).

sister_of(jane,sam).
sister_of(sally,sarah).
sister_of(judy,sarah).
% Examples

aunt_of(jane,happy).
aunt_of(sally,jim).
aunt_of(judy,jim).

:- aunt_of(happy,sally).
:- aunt_of(judy,sarah).
[Generalising aunt_of(jane,henry).]
[Most specific clause is]

aunt_of(A,B) :- parent_of(C,B), sister_of(A,C).

[Learning aunt_of/2 from positive examples]
[C:-0,12,11,0 aunt_of(A,B).]
[C:6,12,4,0 aunt_of(A,B) :- parent_of(C,B).]
[C:6,12,3,0 aunt_of(A,B) :- parent_of(C,B), sister_of(A,C).]
[C:6,12,3,0 aunt_of(A,B) :- parent_of(C,B), sister_of(A,D).]
[C:4,12,6,0 aunt_of(A,B) :- sister_of(A,C).]
[5 explored search nodes]
f=6,p=12,n=3,h=0
[Result of search is]

aunt_of(A,B) :- parent_of(C,B), sister_of(A,C).

[3 redundant clauses retracted]

aunt_of(A,B) :- parent_of(C,B), sister_of(A,C).

[Total number of clauses = 1]

[Time taken 0.02s]